If it's not what You are looking for type in the equation solver your own equation and let us solve it.
127=-16t^2+100t
We move all terms to the left:
127-(-16t^2+100t)=0
We get rid of parentheses
16t^2-100t+127=0
a = 16; b = -100; c = +127;
Δ = b2-4ac
Δ = -1002-4·16·127
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-12\sqrt{13}}{2*16}=\frac{100-12\sqrt{13}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+12\sqrt{13}}{2*16}=\frac{100+12\sqrt{13}}{32} $
| 6-2w=2w-2 | | −40=4(x+1)−3(6x−4) | | -40=4(x-1)-3(6x-4) | | 2(n-1)+4n=23(n-1) | | 6(u–9)=–18 | | (3+x)8+2x=34 | | x–3/2=13 | | 2x+272x-11=100 | | 23=1+6n+5n | | h+91=922 | | 23+2g=13 | | 2h=–4+3h | | (3.4+m)8=34 | | r-18.5=-5.8 | | 12c=324 | | 2x+27X2x-11=100 | | 4x+2(-7)=10 | | 20-6p=8 | | 7=w3+3 | | f+77=948 | | -24s-46=-842 | | t+15=5 | | –3(–7+4q)= | | g+367=478 | | 10x-30+9x=-32 | | (3x+8)/(9-x)=-2 | | k/19=29 | | 4y+9=-33 | | -93=-3-6(7n+8) | | 15+8y=71 | | 9z=10z+10 | | 7j=294 |